Sample size estimation is a necessary and crucial step in clinical trial research. Statistical requirements, limited patient availability and high financial risk of a clinical trial necessitate the proper calculation of this measure. The aim of this paper is to discuss the reasons why the estimation of the sample size is important and, based on the obtained results, to show how this process may be completed in selected cases. Stochastic simulations based on the Monte Carlo methods approach are applied. Therefore, new challenges facing this area of research are mentioned.
sample size, clinical trial, Monte Carlo methods, stochastic simulations
C13, C15, C18
Amrhein, V., Greenland, S., & McShane, B. (2019, March 20). Scientists rise up against statistical significance. https://www.nature.com/articles/d41586-019-00857-9.
Chin, R. (2012). Adaptive and Flexible Clinical Trials. CRC Press.
Chow, S.-C., Wang, H., & Shao, J. (2007). Sample Size Calculations in Clinical Research (2nd edition). CRC Press. https://doi.org/10.1201/9781584889830.
Delgado, D. A., Lambert, B. S., Boutris, N., McCulloch, P. C., Robbins, A. B., Moreno, M. R., & Harris, J. D. (2018). Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults. Journal of the American Academy of Orthopaedic Surgeons. Global Research & Reviews, 2(3), 1–6. https://doi.org/10.5435/JAAOSGlobal-D-17-00088.
European Medicines Agency. (n.d.). ICH E9 statistical principles for clinical trials – Scientific guideline. Retrieved October 14, 2019, from https://www.ema.europa.eu/en/ich-e9-statistical-principles-clinical-trials-scientific-guideline.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.
Hayes, M. H. S., & Patterson, D. G. (1921). Experimental development of the graphic rating method. Psychological Bulletin, 18(2), 98–99.
Jiang, Z., Wang, L., Li, C., Xia, J., & Jia, H. (2012). A Practical Simulation Method to Calculate Sample Size of Group Sequential Trials for Time-to-Event Data under Exponential and Weibull Distribution. PLOS ONE, 7(9), 1–10. https://doi.org/10.1371/journal.pone.0044013.
National Institutes of Health. (n.d.). Clinical Research Trials and You: The Basics. Retrieved October 3, 2022, from https://www.nih.gov/health-information/nih-clinical-research-trials-you/basics.
Platek, R., & Särndal, C. E. (2001). Czy statystyk może dostarczyć dane wysokiej jakości?. Wiadomości Statystyczne, 46(4), 1–21.
Raosoft. (2004). Raosoft Sample Size Calculator. http://www.raosoft.com/samplesize.html.
Szreder, M. (2022). Szanse i iluzje dotyczące korzystania z dużych prób we wnioskowaniu statystycznym. Wiadomości Statystyczne. The Polish Statistician, 67(8), 1–16. https://doi.org/10.5604/01.3001.0015.9704.
U.S. Food and Drug Administration. (n.d.). Guidance for Industry. E9 Statistical Principles for Clinical Trials. Retrieved September 11, 2019, from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e9-statistical-principles-clinical-trials.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2), 129–133. http://dx.doi.org/10.1080/00031305.2016.1154108.
Yeh, J., Gupta, S., Patel, S. J., Kota, V., & Guddati, A. K. (2020). Trends in the crossover of patients in phase III oncology clinical trials in the USA. Ecancermedicalscience, 14, 1–8. https://doi.org/10.3332/ecancer.2020.1142.